Pilote automatique de bateau

Transmission de puissance

Présentation générale des pilotes automatiques de navigation

Des équipiers à part entière pour moins de 700 €! Un pilote automatique permet :

- de ne pas être rivé à la barre pendant toute la durée de la navigation;
- de soulager le barreur fatigué par la concentration que demande le maintien d'un; cap précis.
- de libérer les mains lors de manœuvres effectuées avec un équipage réduit;

Lors de la navigation en solitaire, un pilote automatique n'est plus seulement un appoint, mais devient nécessaire au navigateur ne serait-ce que pour virer de bord, empanner ou changer de voiles.

Pendant ces trois phases capitales de la navigation, l'appareil prend en main la destinée du bateau et celle de son capitaine.

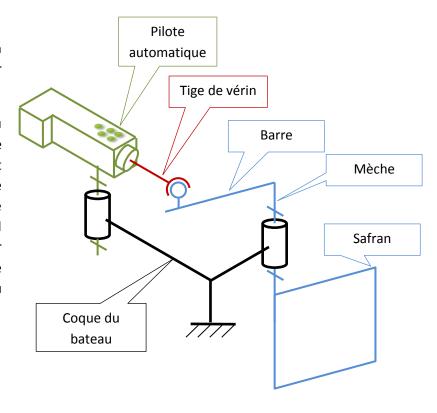
Qualités demandées aux pilotes automatiques de navigation :

Il leurs faut être léger, faciles à installer, de maniement simple, et fiables, devant impérativement conserver le bon cap malgré l'état de la mer.

Le pilote doit d'autre part pouvoir être connecté ou débranché rapidement de la barre afin d'éviter un abordage, un obstacle, de permettre au skipper de reprendre en main la direction du bateau.

Enfin, il doit résister aux attaques de ce milieu hostile qu'est la mer.

Le pilote automatique et son environnement


Le pilote est fixé au bateau en deux points : sur le banc de cockpit par un support et à la barre franche par une rotule.

Il peut être relié à l'ensemble des instruments de bord tels que loch, girouette - anémomètre, compas électronique et instrument de navigation du type GPS, Decca, etc...

Principe du fonctionnement

Un compas transmet une information à un système électronique couplé à un moteur commandant un vérin solidaire de la barre.

Tant que le bateau suit son cap, et le compas du pilote réglé sur le cap à suivre, aucune information n'est transmise à l'électronique et le moteur n'est pas sollicité. Si par contre le bateau quitte sa trajectoire, le compas du pilote s'en écarte d'autant, et transmet un signal électronique qui donne alors l'ordre au moteur de tourner dans le sens permettant à la tige de vérin solidaire de la barre de ramener le bateau sur son cap.

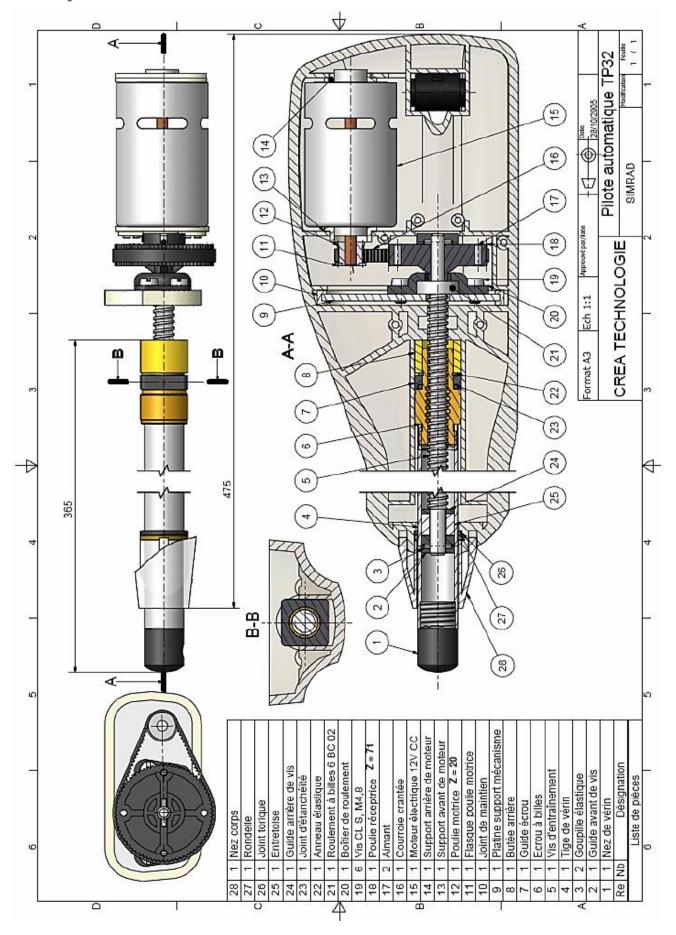
Le marché des pilotes automatiques

À l'échelon international, deux entreprises sont présentes sur le marché des pilotes automatiques de navigation. Ceux-ci sont proposés aux particuliers principalement par les magasins d'accastillage.

Tableau des principaux pilotes automatiques pour barre franche et leurs caractéristiques d'après le guide "plaisance - évasion" d'accastillage diffusion :

PILOTES	NAVICO
BARRE FRANCHE	TP 300 C
Poids maxi du bateau (Kg)	6300
Compas fluxgate	oui
Angle de virement	100°
Course de vérin (mm)	250
Temps de butée à butée	4.2
Force maxi (daN)	85
Consommation moyenne (A)	0.5
PRIX	640€

La famille des pilotes automatiques NAVICO


TP 300 C : L'un des plus puissants (85 Kg) et des plus rapides (4.2 s) des pilotes de barre franche. Il est directement interfaçable à un positionneur. Cette particularité alliée à une forte puissance en fait un rapport qualité/prix imbattable.

Caractéristiques techniques :

<u>Mécanisme</u>	Vis sans fin		<u>Course</u>		250 mm
<u>Alimentation</u>	12 V DC		Consommation	Stand-by	60 mA
Temps de sortie de vérin	Sans charge	: 4.2 s		Auto (moyenne)	500 mA
	20 Kg	4.7 s			
	40 Kg	6 s			
	50 Kg	7 s			
Poussée maximum	85 Kg		Montage		Bâbord ou tribord

Description matérielle

Documentation sur le moteur

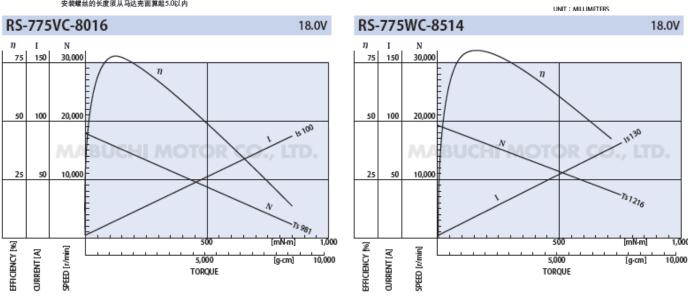
RS-775VC/WC

OUTPUT: 9.0W ~ 300W (APPROX)

カーボンブラシ | Carbon-brush motors | 碳精电刷

代表的用途 工具:ドリル/ガーデンツール/丸のこ

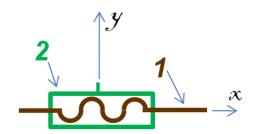
Typical Applications Cordless Power Tools: Drill / Garden Tool / Circular Saw


主要用途 工具:电钻、园艺工具、圆锯

WEIGHT: 383g (APPROX)

MODEL		VOLTAGE		NO LOAD		AT MAXIMUM EFFICIENCY					STALL		
		OPERATING	NOMINAL	SPEED	SPEED CURRENT SPEED CURREN		CURRENT	NT TORQUE		OUTPUT	TORQUE		CURRENT
		RANGE	NOMINAL	r/min	Α	r/min	Α	mN·m	g-cm	W	mN·m	g-cm	Α
RS-775VC-8016 ((*1)	6~20	18V CONSTANT	18000	2.20	15680	14.8	127	1292	208	981	10000	100
RS-775WC-8514 ((*1)	6~20	18V CONSTANT	19500	2.70	17040	18.7	153	1561	273	1216	12396	130
RS-775WC-9013 ((*1)	6~18	18V CONSTANT	21000	2.80	18520	20.9	153	1560	296	1295	13201	156

(*1) CCW進角仕様(CCW+) | CCW shifted commutation (CCW+) | CCW进角规格(CCW+)



マブチモーター株式会社(本社 営業部) MABUCHI MOTOR CO., LTD. (Headquarters Sales Dept. | 总公司 曹业部) 千葉県松戸市松飛台 430番地 〒270-2280 Tel. 047-710-1106 Fax. 047-710-1132 430 Matsuhidai, Matsudo City, Chiba 270-2280, Japan Tel. 81-47-710-1106 Fax. 81-47-710-1132 E-mail : slsinq@mabuchi-motor.co.jp

Le pas de l'hélice correspond à la distance parcourue par un filet lors d'une rotation d'un tour autour de l'axe. Cette hélice possède un angle $\,^{\alpha}\,$ qui correspond à son inclinaison par rapport à une perpendiculaire à l'axe. La relation liant le pas à l'angle est :

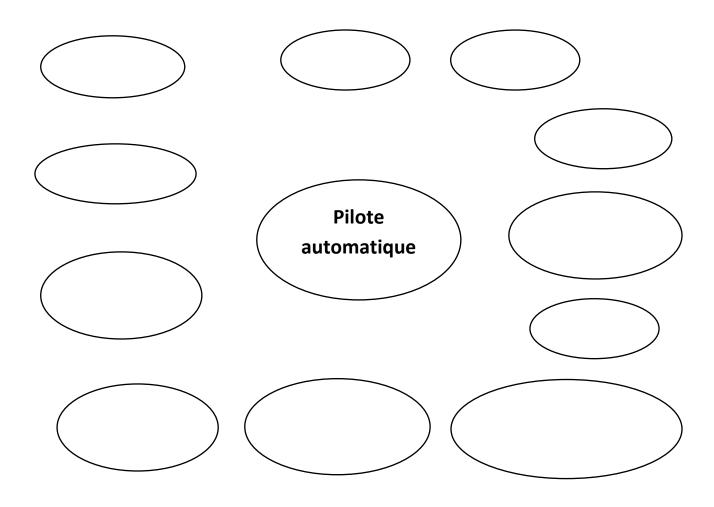
$$tan\alpha = \frac{p}{2.\pi r}$$
 où r est le rayon de la vis.

La liaison hélicoïdale parfaite entre (1) et (2), de centre B, d'axe $\overrightarrow{B_\chi}$ est modélisée par :

- En statique :
 - une résultante \overrightarrow{B} portée par l'axe $\overrightarrow{B_x}$ (X_B par exemple ou F_B),
 - un moment $\overrightarrow{M_t(\overrightarrow{B})}$ porté aussi par cet axe ($\emph{\textbf{L}}_B$ par exemple ou $\emph{\textbf{C}}_B$).

Entre ces deux composantes existe la relation : $C_B=F_B$. $\frac{p}{2.\pi}$ dans laquelle « p » représente le pas de l'hélice.

- En cinématique
 - $\overrightarrow{V_{B,1/2}}$ vitesse linéaire de 1 par rapport à 2 sur l'axe x ; $\omega_{1/2}$ vitesse de rotation de 1 par rapport à 2 sur l'axe x.


Entre ces deux composantes existe la relation suivante : $V_{B,1/2} = \frac{p}{2\pi}$. $\omega_{B,1/2}$

Énoncé des fonctions de service

FP1	manœuvrer la barre				
FP2	analyser la direction du bateau par rapport au nord magnétique et au cap choisi afin d'ajuster la				
FPZ	position de la barre				
FC1	accrocher le pilote automatique à la coque du bateau et pouvoir le désaccoupler facilement				
FC2	mettre en marche, sélectionner le cap à suivre et la sensibilité				
FC3	raccorder le pilote automatique à la source d'énergie				
FC4	être silencieux				
FC5	être esthétique				
FC6	consommer le moins d'énergie possible				
FC7	être étanche et non oxydable				
FC8	accrocher le pilote automatique à la barre				
FC9	raccorder éventuellement le pilote automatique aux périphériques de navigation afin d'envoyer les				
FC9	consignes de cap et les paramètres de navigation				

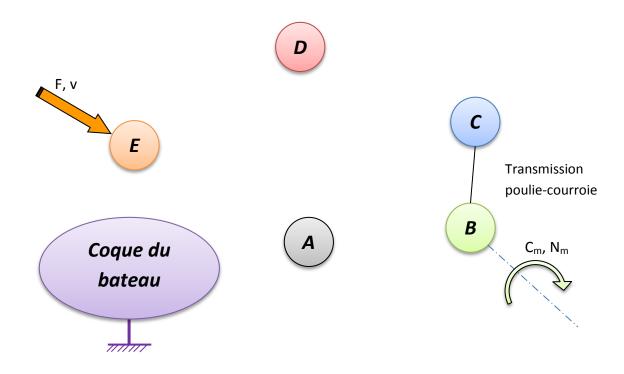
🖎 Complétez le diagramme pieuvre ci-dessous grâce aux fonctions énoncées ci-dessus :

1ère partie : étude cinématique

A/ Modélisation des liaisons

1/ Les classes d'équivalence

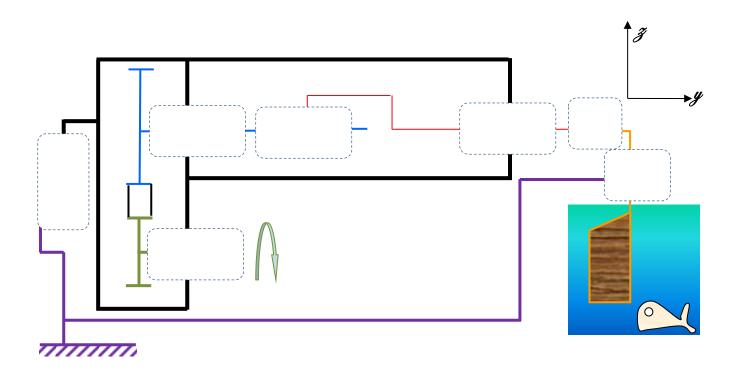
🖎 Complétez les classes d'équivalence ci-dessous :


$$A = \{31;$$
 $D = \{6;$

$$B = \{12;$$
 $E = \{barre;$

$$C = \{18;$$

2/ graphe des liaisons


🖎 Complétez le graphe des liaisons ci-dessous :

Le moteur 15 applique un couple C_M et une vitesse de rotation N_M sur la poulie 22. De même, l'action mécanique entre la barre et 1 sera caractérisée par une force F et une vitesse de translation V.

Liaison entre/	Degrés de liberté	Nom de la liaison

🖎 Complétez le schéma cinématique ci-dessous :

2ème partie : calcul sur la chaîne cinématique

Une étude intermédiaire a permis de déterminer, en fonction de l'effort trouvé sur le safran, un effort sur la tige de vérin de 450 N

Données:

- intensité de la force sur la tige du vérin: Prendre F₁ = 450 N.
- vitesse de déplacement de la tige du vérin: V₁ = 84 mm/s;
- rayon moyen de la liaison hélicoïdale entre 5 et 6: r = 4,75 mm;
- rendement du système vis-écrou à billes $\eta_v = 0.93$
- facteur de frottement de la liaison vis-écrou à billes μ = 0,007;
- rendement du système poulie-courroie η_p = 0,95.

Les autres valeurs sont à chercher dans la nomenclature du dossier technique.

Déterminez : (Toutes vos réponses devront être justifiées.)

La puissance développée par la barre sur la tige du vérin P ₁ :
Le couple sur la vis d'entraînement C_5 :
La vitesse angulaire de la vis ω_{5} :

La puissance développée sur la vis P ₅ :
Le couple sur l'axe moteur C ₁₂ :
La vitesse angulaire sur l'axe moteur ω_{12} :
La puissance développée par le moteur P ₁₂ :

En comparant ces valeurs avec celles des données du moteur électrique Mabuchi 775 :					
Que pouvez-vous dire sur le fonctionnement du moteur lorsque la tige du vérin exerce sur la barre une force de 450 N et quelle référence vaut mieux-t-il prendre ?					

